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In this study, inward matrix products are used to construct a theoretical framework where
new space-time structures of arbitrary dimensions can be built up. The mathematical theory,
based on inward matrix algebra, allows the derivation and integration of vectors and matrices
composed by well-behaved functional elements. Every function element is associated at least
to a linearly independent variable connected to such an element. As examples are discussed
first the construction of general density functions, followed by the reformulation of the time-
dependent Schrödinger equation. A generalN-dimensional classical universe is presented,
where not only space but also time, mass, energy and other related physical properties ac-
quire an arbitrary hypermatrix structure. In this hypothetical framework scalar values related
to physical quantities can be alternatively associated to cosine-like measures in the chosen
spaces. Finally, simple problems on special relativity are briefly discussed from this point of
view.
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trix space-time structures,N-dimensional time-dependent Schrödinger equation, classical me-
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Introduction

Inward matrix products(IMP) have been studied and used in several applications
involving some aspects of quantum chemistry [1] and quantum density functions [2]
in general, as well as have been employed to discuss quantum similarity and quantum
QSAR in particular [3]. The essential IMP features are already implemented in the stan-
dard Fortran 95 compilers, see, for example, [4], thus the immediate use of IMP in
computational structures is assured, as was already commented in previous work [5–7].
It is most curious that the IMP is so barely present in the literature associated to the
usual theoretical or computational chemical environment and has been almost unnoticed
in mathematical discussions. References to IMP, as far as the author is aware, are scarce
as the following encyclopaedic quotation shows [8]. Thus, the interest into developing
IMP properties and applications cannot only have physical and chemical interest but
even can be found to possess a certain applied mathematical point of view utility.
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IMP algebraic and functional definitions and their use have already been provided
in several places [1,3,5–7]. IMP has been employed to obtain the associated matrix
powers and functions and has been described as an alternative way leading to matrix
symmetrization [5]. Use of IMP to obtain constrained approximate solutions of linear
equations has been also reported and used in a quantum QSAR context [3] from sev-
eral points of view [5,7], mainly related to the relationship of QSAR with the so-called
quantum similarity theory (see for recent reviews [9–13]). Such continued application
possibilities have triggered the first steps of the present report.

After reviewing general features of IMP algebra, the definitions of possible inward
matrix derivatives and integrals will be given, leading to set up the main background
in order to permit the construction of the body of an IMP-like calculus. As the pur-
pose of this paper is to apply IMP calculus to various physical domains; thus, some
applications of the whole computational structure will follow, among them, there are the
construction of general density functions and a particular form of some special kind of
time-dependent Schrödinger equation, which will be presented in a (hyper-)matrix for-
malism. Finally, it is presented a scheme of the plausible description of a symmetric
space-time of arbitrary dimensions. In this hypothetical situation, the usual location and
properties of physical objects can be arranged to adopt a structure of (hyper-)matrix. In
this circumstances, scalar physical observables can be supposedly measured by means
of the cosine of the angle subtended by two vectors, defined in turn within the physical
object (hyper-)matrix spaces. Both classical and special relativity scenarios are briefly
discussed in this context.

1. Inward matrix product (IMP)

As an introduction to IMP and in order to spare the potential reader the time to
study other references, a brief description of the properties of IMP will be provided
here. In this sense, the following definition can serve to build a necessary starting prac-
tical IMP structure. However, IMP has been defined in various ways and with several
purposes, more information about these aspects can be found within [1,3,7,14,15].

Definition 1 (Inward (hyper-)matrix1 product). Consider any arbitrary (hyper-)matrix
space over a fieldK:M(×n)(K). Let A, B ∈ M (×n). An IMP involving the known
(hyper-)matrix pair is a closed operation, resulting in a new (hyper-)matrixP ∈ M (×n),
and symbolised byP = A ∗ B, whose elements are defined by the algorithm:

∀(i): p(i) = a(i)b(i).

Above, the elements of the involved (hyper-)matrices are identified by means of an in-
dex vector(i) ≡ (i1, i2, . . . , ip). Thus, the (hyper-)matrix space dimension is given by

1 Along this study the term (hyper-)matrix will be used in order to note the feature consisting in that every
given result or definition can be employed both in matrices or in a much more general framework, made by
hypermatrices of arbitrary dimension. Such a notation has been already employed for similar purposes [7].
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(×n) ≡ (n1× n2× · · · × np). The notation follows a previous one, employed when
dealing with nested sum structures [9–13] and generalising in this manner any (hyper-)
matrix form.

1.1. IMP general features

1.1.1. IMP properties
The interest in defining such an IMP stems from the possibility to attach to it the

most usual features of a multiplication composition rule, resembling the usual scalar
algebra features, whilst defined in (hyper-)matrix spaces of arbitrary dimensionality.

The following characteristic properties can be attached to the IMP defined over
the elements of a (hyper-)matrix spaceM(×n): IMP is distributive with respect (hyper-)
matrix sum, as well as associative, and commutative [1]. It is straightforward to demon-
strate that from definition 1, these commented properties can be associated to IMP, and
thus it will not be repeated here. Under this simple definition of IMP, matrices can thus
be allowed to behave almost as scalars. IMP properties have been described several
times in the literature [1,5–7].

1.1.2. IMP unit element and inverse
A. Unity (hyper-)matrix as IMP neutral element.An IMP unit element exists, which
can be called theunity (hyper-)matrix, and represented by a bold unit symbol, that is,
1 ∈M (×n), such that under IMP

1 ∗ A = A ∗ 1 = A.

Using the real multiplication unit, the unity (hyper-)matrix elements can be defined by
means of

1 = {1(i) = 1 ∀(i)}. (1)

B. IMP inverse (hyper-)matrix. A new (hyper-)matrix defines the IMP inverse of a
matrix A, which can be noted as

A[−1] = {a[−1](i)
}
,

with elements, which can be computed as follows:

∀(i): a[−1](i) = (a(i))−1.

This definition produces the sequence of equalities under IMP:

A ∗A[−1] = A[−1] ∗A = 1.

The existence of an IMP inverse is subject to the following important limitation, only if
the additional property holds:

A = {a(i) ∧ ∀(i): a(i) �= 0
}
, (2)
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then the (hyper-)matrixA can be called either IMP invertible, IMP regular or IMP non-
singular. A (hyper-)matrix will be called IMP singular if condition (2) appears to be
false.

C. Hadamard algebra. These properties are sufficient to define a commutative algebra
over any (hyper-)matrix vector space. One can refer to this kind of algebra asHadamard
algebra.

1.1.3. IMP powers and functions
IMP powers of a given (hyper-)matrixA are readily defined asA[p] = {a(i)p}. The

square brackets enveloping the exponent is used here, to distinguish an IMP power from
the one defined involving classical matrix products, in the same way as such notation
was employed in the IMP inverse definition. For example, wheneverZ = A ∗ A, then
the (hyper-)matrixA can be also considered as the IMP square root ofZ, that is:

A = Z[1/2] −→ ∀(i): a(i) = √z(i).
IMP functions of a given (hyper-)matrix are also easy to define. For example, in

general one can use

φ[Z] = {φ(z(i))}.
As noted in several previous papers [3,5,7], IMP algebra is tightly related to diag-

onal matrix products computational algorithms, and the above definitions are the conse-
quence of another shared isomorphic characteristic between both sets.

1.2. IMP applications

Having described the main features of the IMP, two application examples will be
given, in order that the reader can grasp the interest of such a simple IMP computational
structure. Such examples have been chosen among other possible ones, as they will be
employed in later discussion within this paper.

1.2.1. Scalar product of two (hyper-)matrices
The IMP involving two (hyper-)matrices can be trivially related to scalar products.

If such a scalar product is defined, using a nested summation symbol (see, e.g., [16–19])
as

〈A | B〉 =
∑
(i) a(i)b(i).

then one can also employ the auxiliary definition [16–19]

〈A〉 =
∑
(i) a(i),

in order to easily symbolise the sum ofall elements of a given (hyper-)matrix, which
could be called acomplete matrix elements summationoperator. This linear operator
summation device is also a Fortran 95 compiler intrinsic feature, see for more details [4],
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or any compiler manual. The linearity of the complete matrix elements summation op-
erator can be straightforwardly seen as follows:

〈αA+ βB〉 =
∑
(i)
[
αa(i)+ βb(i)]

= α
∑
(i)
[
a(i)

]+ β∑(i)
[
b(i)

]
= α〈A〉 + β〈B〉.

Then, taking into account the previous IMP definition and the complete matrix
elements summation operator details, the next equality might be immediately written:

〈A | B〉 = 〈A ∗ B〉.

1.2.2. Scalar product example
As an application example of the previous scalar product definition, a special prop-

erty of quadratic forms can be studied. A quadratic form involving the (hyper-)matrix
A = {a(i, j)} as well as an arbitrary (hyper-)vector,x = {x(i)}, may be written as

q(x) = xTAx =
∑
(i)
∑
(j) a(i, j)x(i)x(j). (3)

It is well known that ifA is positive definite, then∀x �= 0 → q(x) > 0. The
quadratic form (3) can be also written using the tensorial product of the variable (hyper-)
vector, employing the algorithm:T = x⊗ x = {t (i, j) = x(i)x(j)}. Then, the following
IMP construction of the quadratic form will be also possible:

q(x) = 〈A ∗ T〉 =
∑
(i)
∑
(j) a(i, j)t (i, j).

Define now thesignatureof a (hyper-)matrix as another binary (hyper-)matrix
where the binary digits, taken as elements of the signature (hyper-)matrix, are in ac-
cordance with the signs of the (hyper-)matrix elements [3], that is, for example:

SA = Sign(A) = {sA(i) = δ[a(i) > 0
]}
,

where alogical Kronecker’s deltahas been also used [16–19] in the signature definition.
A logical Kronecker’s delta symbol is a generalization of the well-known one, which is
defined through a logical expressionL. The symbolδ[L] has the values{0,1} when the
logical expression argument takes the values{F, T }, respectively. In the particular case
of the matrix signature under the IMP, the corresponding bit product shall conform to
the sign product rules, that is:

{0× 0≡ 1× 1= 1∧ 1× 0≡ 0× 1= 0}.
This can be associated to the meanings: 0≡ −1∧ 1≡ +1.

As an application of the (hyper-)matrix signature discussed above, if a known
(hyper-)matrix structureA, whenever Sign(A) �= 1 holds, then the following (hyper-)
matrix, the definition of the IMP absolute value ofX, can be easily set, as then any
(hyper-)matrix can be decomposed in the following way:∗|A| = Sign(A) ∗A, which is
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such that Sign(∗|A|) = 1. So, with this in mind and employing the auxiliary definition
of the IMP absolute value function, one can write

∗|A| = {∣∣a(i)∣∣ ∀(i)}. (4)

Consequently, whenever

Sign(A) = Sign(T)→ Sign(A ∗ T) = 1

hold, then, in this particular circumstance, it is always assured thatq(x) > 0. It can be
concluded that in quadratic form evaluation, when a variable (hyper-)vectorx is chosen
such that the following signature relationship holds: Sign(x)⊗ Sign(x) = Sign(A), this
will provide a positive value of the quadratic form.

When a unity signature is everywhere present in the studied (hyper-)matrixA, all
the considered elements are real and positive. In this special case, one can use the sym-
bol A ∗> 0, to indicate this property, alternatively: Sign(A) = 1. The quadratic form
positive valuesq(x) > 0 will be always assured, when a signature1 is chosen to hold
in the variable (hyper-)vectorx ∗> 0. This is the same to say that quadratic forms are
positive definite within avector semispace(VSS)2, see [20–24] for more details on VSS
definition and characteristic features.

1.2.3. IMP and Taylor series expansions of multivariate functions
A Taylor series of a multivariate function,f (x), in the neighborhood of a pointx0

could be expressed in a simple form using the IMP of two tensors, as

f (x) =
∞∑
p=0

〈
∂p
[
f (x0)

] ∗ ⊗p[x− x0]
〉
,

where the symbol∂p[f (x0)] collects all thepth order partial derivatives of the function
evaluated atx = x0; and⊗p[x− x0], collects the elements of thepth order tensor
product of the vector difference argument. It must be noted that∂0[f (x0)] = f (x0) and
⊗0[x− x0] = 1.

2. Inward matrix derivation and integration

Let us describe the basic operations to construct the rudiments of IMP calculus.

2 A VSS is defined as a vector space, where the addition possesses a semigroup structure. All the involved
scalars belong toR+. No reciprocal vectors are present, so no vector differences appear whatsoever, when
developing the appropriate algebra.



R. Carbó-Dorca / Inward matrix product algebra and calculus 233

2.1. Parameterised (hyper-)matrices

Suppose a (hyper-)matrix made of well-behaved functional elements, whose vari-
ables constitute, each of them, an independent item. This is the same as to construct the
adequate definition of a (hyper-)matrix of functions, by means of

Z[T] = {z(i)[t (i)]}. (5)

Square brackets have been used in the formula above to denote the kind of functional of
independent variables, which will be employed here. In the same manner, the (hyper-)
matrixT elements can freely be thought as formed, in turn, of vectors or matrices instead
of scalars, although this will complicate unnecessarily the following analysis and will not
be considered for the moment.

The usual simplest form of such functional dependence can be readily expressed as

T = t1, (6)

where t represents a unique variable or parameter, which becomes common to every
(hyper-)matrix functional element and the auxiliary unity (hyper-)matrix1 has been al-
ready defined in equation (1).

The (hyper-)matrixT will be called from now on aparameter(hyper-)matrix and
any (hyper-)matrix structure likeZ[T] will be a parameterised(hyper-)matrix. Note
that if the propertyZ[T] ∗> 0 has to be considered to hold, then the set of functions
forming the elements of the parameterised (hyper-)matrix shall be positive definite, that
is, ∀(i): z(i)[t (i)] > 0.

2.2. Parameterised (hyper-)matrices IMP derivatives and integrals

IMP derivatives and integrals could be defined over parameterised (hyper-)matrices
in a very particular way, conforming to the structure and properties of the IMP opera-
tions, discussed in the previous section. IMP calculus will become an interesting tool
in order to generalize usual physical concepts related to both classical and quantum me-
chanics.

2.2.1. IMP derivatives
The IMP derivative of a parameterised (hyper-)matrix can be defined as in the

straightforward one-parameter case, by means of a symbolic form with a well-defined
meaning, similar to the one-parameter function matrix derivatives. The IMP (hyper-)
matrix derivative has to be considered a way to derive every parameterised (hyper-)
matrix element with respect to the associated independent variable. That is:

∗ d

dT

(
Z[T]) =

{
d

dt
(
i
)(z(i)[t (i)])

}
. (7)
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Of course, when the (hyper-)matrix possess a functional structure like the one depicted
in equation (6), then the IMP derivative (7) transforms into a conventional matrix deriv-
ative:

∗ d

dT

(
Z[t1]) =

{
d

dt

(
z(i)[t])

}
. (8)

Higher derivatives are obtained by applying rule (7) as many times as needed. For ex-
ample, considering the case of the equation (8), thepth order IMP derivative can be
written as

∗ dp

dTp
(
Z[t1]) =

{
dp

dtp
(
z(i)[t])

}
.

2.2.2. IMP integration
The IMP integration rules follow the same path as the previous IMP derivatives

described before, and in this manner an IMP integral of a parameterised matrix is readily
and coherently constructed as

∗
∫
�

[
Z[T]] dT =

{∫
�

z(i)
[
t (i)

]
dt(i)

}
.

2.2.3. Simple illustrative examples of IMP calculus
In order to illustrate the definitions presented above, examples of IMP derivation

and integration of parameterised matrices will be discussed next.

A. IMP derivative of a parameterised vector.Suppose anN-dimensional vector space,
where every vector element can be described by means of a continuous function of an
independent variable, admitting derivatives up to an arbitrary order. Then

∀x(t) ∈ Vn ∧ t ∈ Cn(R) −→ x(t) = {xi(ti)}. (9)

Thus, the IMP derivative of such anN-dimensional vector can be defined as follows:

∗ d

dt

[
x(t)

] =
{

d

dti
xi(ti)

}
.

Suppose that, moreover, the parameterised vectorsx(t) are made of polynomials of ar-
bitrary order in the independent variables, that is:

x(t) =
{
xi(ti) =

∑
ν

γνit
ν
i

}
, (10)

then the IMP derivative elements will be written

∗ d

dt

[
x(t)

] =
{

d

dti
xi(ti) =

∑
ν

νγνit
ν−1
i

}
.
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B. IMP integral of a parameterised vector.Using the same kind of parameterised vec-
tors as those of the previous example and defined in equation (9), the IMP integral of
such a vector is defined in turn as

∗
∫
�

x(t) dt =
{∫

�

xi(ti)dti

}
.

In case that the polynomial structure (10) is chosen and the integration domain admit-
tedly adopted as[0,+1], then one can write

∗
∫
�

x(t)dt =
{∫ 1

0
xi(ti)dti =

∑
ν

ν−1γνi

}
.

2.3. Generalised density functions

The IMP features permit one to express density functions in a compact and ex-
tremely general form. Previous work [7] may be invoked to define a (hyper-)matrixW
as a convex coefficient (hyper-)matrix of arbitrary dimensions (×n). Convexity meaning
has to be assumed here as, besides the property〈W〉 = 1, also that all elements ofW are
real and positive, that is:W ∗> 0.

Such a (hyper-)matrix with unity signature can be formed by choosing a complex
(hyper-)matrixX, with the same shape and dimension asW, such thatW = X∗ ∗ X. In
this way, it can be assured that

W = {∀ω(i) ∈W→ ∃χ(i) ∈ X: ω(i) = χ(i)∗χ(i) = ∣∣χ(i)∣∣2 ∈ R+}.
Such special choice can be also described by theconvex conditionssymbol onW
[20–23], written as

K{×n}(W) =
{∀ω(i) ∈W→ ω(i) ∈ R+ ∧ 〈W〉 = 1

}
,

or in a shorthand way:

K{×n}(W) = {W ∗> 0∧ 〈W〉 = 1}.
Define now a (hyper-)matrixP with a shape and dimension equal to the one ofW,

and containing as elements, normalised positive definite multivariate functions of a vari-
able (hyper-)matrixt of arbitrary dimension. It can be formally written:

∗
∫

P(t)dt = 1,

where1 is a unity (hyper-)matrix of the appropriate shape and dimension too, that is:
Dim(1) = Dim(P). More specifically, one can compactly build up the convenient struc-
ture of the (hyper-)matrixP as

P =
{
∀p(i)[t (i)] ∈ P→ ∀t (i): p(i)[t(i)] ∈ R+ ∧

∫
p(i)

[
t (i)

]
dt (i) = 1

}
.
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This can be accomplished by constructing an IMP using a (hyper-)matrix with
elements made of functions with the appropriate shape and dimension as

P =  ∗∗ ,
so, in this manner the (hyper-)matrixP can be written as

P = {∀p(i) ∈ P→ ∃ϕ(i) ∈  : p(i) = ∣∣ϕ(i)∣∣2}.
A normalised density function of the variable (hyper-)matrixt can be expressed as an
IMP manipulation producing a scalar product:

ρ(t) = 〈W ∗ P(t)
〉 ⇒

∫
ρ(t)dt=

∫ 〈
W ∗ P(t)

〉
dt

=
〈
W ∗

∫
P(t)dt

〉

= 〈W ∗ 1〉 = 〈W〉 = 1.

3. Time-dependent Schrödinger equation

The well-known time-dependence of Schrödinger classical wave functions can be
generalised into a time-like parameterised (hyper-)vector or matrix. To analyse this pos-
sibility, first the scalar time parameterised Schrödinger equation can be explicitly written
in atomic units as (see, e.g., [25,26])

H (R, t) = i
∂ (R, t)
∂t

. (11)

There the usual meaning has to be taken for the symbols employed: H is the system’s
Hamiltonian operator, (R, t) the time-dependent wave function, withR denoting the
system’s particles position coordinates in matrix form, andt the scalar time. The usual
consistent form [25,26] of the time-dependent wave function is

 (R, t) = #(R)exp(−iEt), (12)

whereE is the system’s state energy.
From this point of view, nothing opposes to the fact that the wave function can

be considered parameterised by a time-like (hyper-)matrix taking symbolically in this
case the form (R,T). The factorisation (12) could be structured in terms of an IMP
exponential function like

 (R,T) = #(R exp(−iET), (13)

where the exponential part of the decomposition (13) may be defined in turn as another
IMP exponential function:

Z[T] = exp(−iET) = {z(i) = exp
(−iET (i)

)}
,
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so in this way the time-dependent Schrödinger equation equivalent to equation (11) may
be written using the IMP derivative concept, as defined in section 2.2.1:

H (R,T) = i

[
∗ d

dT
 (R,T)

]
. (14)

So, when a decomposition of type (13) is performed, then the IMP derivative in equation
(14) can be written as

i

[
∗ d

dT
 (R,T)

]
= E (R,T).

In this way it is obvious that equation (14), like the classical counterpart in equation (11),
can be equally transformed into the time-independent Schrödinger equation

H#(R) = E#(R).
It is also straightforward to see how the time-dependent perturbation theory can be easily
set in the parameterised time-like (hyper-)matrix wave function scheme in the same way
as in the scalar framework.

4. Parameterised (hyper-)matrix structure of classical space–time

The naive exercise performed over the classical Schrödinger equation, as in sec-
tion 3 above, may indicate that even at macroscopic classical or relativistic mechanics, it
is possible to use a parameterised (hyper-)matrix structure of space–time. If this prospect
is feasible, then the usual scalar results, related to the experimental values of physical
measurement, shall have necessarily a connection with theN-dimensional nature of the
space–time structure, compatible with the experimental evidence of the usual scalar re-
sults. In this section one among other possible solutions of this general framework will
be studied.

4.1. Velocity, momentum and mass

Suppose a symmetric space–time with respect to the dimensions of both space and
time, made of (hyper-)matrix coordinates. That is: the dimension of space and time
coordinates will be the same for a given physical object description. Moreover, suppose
that some Euclidean space–time structure holds too. Then, the space coordinatesZ[T]
can be built up as a parameterised (hyper-)matrix, in the same manner as in equation (5).
A velocity (hyper-)matrix can be then written as the IMP derivative:

V[T] = ∗ d

dT
Z[T]. (15)
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Thus, the momentum can be defined using a (hyper-)matrix mass structure of the appro-
priate dimensions, forming a (hyper-)matrix structure, also of the same dimensions as
space and time coordinates, employing the IMP, in the following fashion:

P[T] =M ∗V[T]. (16)

Classically time and mass are positive definite scalar quantities, thus, apparently
a problem arises on how to connect this uncommon (hyper-)matrix panorama with the
customary time and mass scalar measures. This situation shall be clarified now, before
going further away in the theoretical development.

To start with, one can consider that time and mass being positive definite in our
custom world, even if they become associated to a (hyper-)matrix structure, then their
elements could be considered restricted to be positive. Thus, the (hyper-)matricesM and
T can be, in this way, considered as elements of a vector semispace with the appropriate
dimension. As it has been defined:M ∗> 0∧ T ∗> 0.

4.2. Scalar measures

From here, one can consider the characteristics of vector semispaces being of such
a nature that, as not allowing negative vector elements nor scalars, then Euclidian-like
distance measures are not allowed too, thus, a plausible remnant solution, in order to
measure the mass-like and time-like (hyper-)matrices, while transforming them into
scalar positive definite modules, is the inverse of a distance measure: a cosine of the
angle between two vectors.

Then, it is necessary now to describe in a (hyper-)matrix context how a cosine-
like scalar can be computed and how this result can be associated to another scalar with
the appropriate range of a distance, if needed. In order to see the general procedure
suppose that a unity signature (hyper-)matrixZ, Z ∗> 0, shall be compared against
another reference (hyper-)matrixZ0, say, with the same unit signature characteristics:
Z0 ∗> 0. First, the following positive definite function can be computed:

γ (Z;Z0) = 〈Z ∗ Z0〉
(〈Z ∗ Z〉〈Z0 ∗ Z0〉

)−1/2
. (17)

Such a function yields a range of values included in the intervalγ ∈ [0,+1]. The
reciprocal positive definite measureg = γ −1− 1 produces a new distance-like range, as
now one will haveg ∈ [+∞,0], and consequently, one can consider this distance-like
parameter as a real non-negative scalar.

To see this applied to the previously defined mechanical (hyper-)matrices, suppose
that time-like (hyper-)matrices wait to be measured, with respect of a time-like (hyper-)
matrix T0, which acts as a reference. The appropriate scalar measure, associated to the
actual time-like (hyper-)matrixT, will be easily based, using equation (17), on the cosine
expression:

τ = γ (T;T0). (18)
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Then, the scalar time measuret = τ−1 − 1, will, thus, behave as a distance-like form,
providing a positive definite scalar time measure. This is so because the equation (18)
is nothing else than the cosine of the angle subtended between two time (hyper-)matrix
elements of a VSS:T andT0. Because it represents the cosine of two unity signature
(hyper-)matrices, it will possess a range of values defined likeτ ∈ [0,+1], thus, the
scalar time measuret will have the positive definite ranget ∈ [+∞,0], corresponding
to the former variation limits ofτ .

The same will occur between the mass-like (hyper-)matricesM, when com-
pared against a convenient reference (hyper-)matrixM0. A cosine like measureµ =
γ (M;M0), defined exactly as in equation (17), will produce the desired result. So, in
this way a positive definite scalar massm = µ−1 − 1 can be defined too, ranging in the
complete possible interval of positive real numbers.

Of course, this measuring protocol, set up in order to convert (hyper-)matrix objects
into scalars, resembles the usual physical measures of length, time and mass, by using
an object of the same nature as a measuring standard and yielding a scalar value as a
result.

4.3. Kinetic energy

Continuing in this path, kinetic energy can be also structured as a (hyper-)matrixK,
by employing the structures already defined, thus, one can write

K = 1

2
M ∗V[2], (19)

where the velocity (hyper-)matrix, as defined in equation (15), is squared in an IMP
power definition:

V[2] = V ∗V.

The interesting fact consists here in that the kinetic energy structure in the form of a
(hyper-)matrix can be also considered as having unity signature, or Sign(K) = 1. Thus,
the scalar measure of this mechanical object characteristic can be handled in the same
way, as has been commented in the time-like and mass-like cases.

So, a scalar kinetic energy measure can be defined using a reference (hyper-)matrix
K0, by means of computing the cosine-like functionκ = γ (K;K0), and then a straight-
forward distance-like formk = κ−1− 1.

Also, as it is usual, the kinetic energy expression (19) can be expressed in terms of
the momentum structure (16), as the IMP products and powers can be used accordingly:

K = 1

2
M[−1] ∗ P[2]. (20)

In the light of these definitions, an interesting property appears to be necessarily asso-
ciated now to the mass-like (hyper-)matrices. As the IMP inverse of the mass (hyper-)
matrix has to be available, for example, at least to compute momentum expressions like
equation (20), then the mass-like (hyper-)matrices cannot possess any element null: they
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shall be defined as (hyper-)matrices with strictly positive definite non-null elements.
Thus, if mass is constructed in a symmetrically dimensional space–time structure as a
(hyper-)matrix of the same dimensions as the space–time coordinates possess, in order
that this can be possible and that no impediments to construct other IMP functions of
mass-like objects shall arise, these mathematical structures attached to the physical ob-
jects could only bear strictly positive elements.

4.4. Some remarks

Therefore, in this way, one can see that a classical physical universe can be de-
scribed in a coherent space–time, dimensionally symmetric, but also constructed with
arbitrary dimensions. The scalar measures of distance, time, mass and kinetic energy
can be obtained as the result of a cosine-like similarity measure, comparing the actual
N-dimensional structure with a reference (hyper-)matrix of the appropriate dimensions.
For example, in case that one chooses a tri-dimensional space structure and a symmetric
tri-dimensional time structure, mass vectors will be tri-dimensional too, and so on.

5. Parameterised symmetric space–time in a special relativity framework

As it has been discussed in the previous section, the classical naive description
structure of common mechanical and its most relevant computational elements can be
coherently described in a completely general, dimensionally symmetric, classical space–
time frameworks. Thus, there seems that no problems have to be present when entering
the special relativistic parent point of view, and thus, similar results could be expected,
if instead of a Euclidean space, an appropriate Minkowski space is considered as the
background space–time frame. A symmetric Minkowski space–time is straightforward
to construct, and its definition will not proceed any further here. Of course, now the
interest of the discussion shall be focused in this case into the space, time and mass
variation with velocity. This problem will be the one studied in the present section.

The usual relativistic space–time transformations can be written in the following
terms, see, for example, [27]:

vx = α(x − vt), vt = α(t − c−1βx), (21)

where

α = (1− β2
)−1/2

, β = v
c
,

and the usual meaning has to be associated with the employed symbols: space coor-
dinatesvx, x, time coordinatesvt, t , velocity v, light velocity c. The structure of every
term shall be modified accordingly to the arbitrary dimensional framework of the present
(hyper-)matrix description.
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The nature of the parametersα andβ will be reconsidered first, at the light of the
new (hyper-)matrix framework proposed here. As the velocityV now is considered as a
(hyper-)matrix as in the classical case, then the (hyper-)matrix

B = c−1V

has to alternatively substitute the original parameterβ. With respect to the parameterα,
one can see that it can be substituted by the (hyper-)matrix

A = (1− B[2]
)[−1/2]

,

obtained by means of appropriate IMP powers. Then, the Lorentz-like transformation
formulae can be written into the (hyper-)matrix structure as

vX= A ∗ (X− V ∗ T),
vT = A ∗ (T− c−1B ∗ X

)
,

(22)

where the (hyper-)matricesvX,X3 andvT,T denote the space-like and time-like (hyper-)
matrix object descriptors, respectively, and the IMP has been used in order to obtain
equivalent expressions to the scalar equations (21). This formulation can be interpreted
as if every (hyper-)matrix component suffers a Lorentz-like transformation. The light
velocity can be taken as a scalar or may be transformed into a scalar (hyper-)matrix,
by simply defining the corresponding light velocity (hyper-)matrix asC = c1. The
usual special relativity definitions and derived properties can be translated to the present
space-time description with essentially the same results, as can be easily tested.

But it can be interesting to see if the scalar classical measures discussed in the pre-
vious section still hold. Accepting these special relativity parallel formulas, the variation
of length and time with velocity could also be obtained through the cosine manipulations
already discussed in the previous section, dealing with classical space–time of arbitrary
dimensions. Thus, in this way the space variation may be computed taking a space-like
(hyper-)matrix objectX0 as a reference.

So, taking all this into account, the following angle-like function can be evaluated:

λ = γ (X;X0). (23)

Then, one will need the space-like object description in the moving frame:

X = A[−1] ∗ vX+ V ∗ T,

and the needed scalar products will be obtained in turn as

〈X ∗X0〉 =
〈(

A[−1] ∗ vX+ V ∗ T
) ∗ X0

〉
(24)

3 The space variable (hyper-)matrixX, appearing in the first row of equation (22), has somewhat a compli-
cated structure, as can be seen in [28, p. 11]. Just to mimic the first part of equation (20) as well as in
order to preserve simplicity, it will be left as a simple position array.
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and

〈X ∗ X〉 = 〈(A[−1] ∗ vX+ V ∗ T
)[2]〉
,

which is if the space-like vector may be considered normalized, that is:〈X ∗ X〉 = 1,
while admitting that no generality is lost also supposing the reference space-like object
description normalized, or〈X0 ∗X0〉 = 1.

Thus, the function (23) will be expressed by the corresponding quotient like the one
of equation (17), which owing to the normalization of the involved vectors is expressed
directly as equation (24):

λ= γ (X;X0)

≡ 〈A[−1] ∗ (vX+ V ∗ T
) ∗X0

〉
= 〈A[−1]〉 ∗ 〈vX ∗X0

〉+ 〈A[−1] ∗ V
〉 ∗ 〈T ∗ X0〉,

where the asterisks enveloping the summation symbols denote Hadamard products [4]4.
Then, in order to simplify the expression of the measureλ, one can also suppose the
space-like reference representation almost orthogonal to the involved time-like repre-
sentation, so it can be written:

λ ≈ 〈A[−1]〉 ∗ 〈vX ∗ X0
〉 ≡ 〈A[−1]〉 ∗ γ (vX;X0

)
.

Thus, the following equation may be adopted at the end:

λ ≈ 〈A[−1]〉 ∗ νλ,
and the distance-like scalar. = λ−1− 1 becomes in this case

. = (〈A[−1]〉 ∗ νλ)−1− 1,

where some plausible simplification produces

. ≈ 〈A〉 ∗ vλ−1− 1= 〈A〉 ∗ (ν.+ 1
)− 1,

a result, which can be finally expressed simply as

. ≈ 〈A〉 ∗ ν.,
describing a variation of the distance-like scalar, associated to the space-like objects and
measured in a cosine form. If this is feasible, then the observable object length will
contract, as it must be expected from the usual special relativity result.

An equivalent reasoning may be followed for the time-like and mass-like descrip-
tions, yielding equivalent results to the one-dimensional case, and for these reasons will
not be repeated here.

4 The Hadamard product, involving two summations bearing the same number of terms, is defined as
yielding another sum made by the products of every pair of the initial sum elements. That is, generally
speaking,〈A〉 ∗ 〈B〉 =∑N(i) a(i) ∗

∑
N(i) b(i) =

∑
N(i) a(i)b(i) = 〈A ∗ B〉.
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6. Conclusions and comments

6.1. Conclusions

With the aid of inward matrix product algebra, (hyper-)matrix representations of
symmetrical space–time objects can be manipulated as in the scalar algebra physical
counterparts. Interesting results, related to the Schrödinger equation and the associated
matrix structure of mass and kinetic energy, as well as to the special relativity relation-
ships can be obtained. A well-known measure concept, related to cosines of the angles
subtended by two (hyper-)matrix objects, can be supposedly used to obtain the scalar
values of the physical measures, and in this way the usual physical world measurement
pictures can be easily connected with a superposed (hyper-)matrix description.

6.2. Comments

That time can be handled within quantum mechanics for each particle in a submi-
croscopic system in a non-scalar fashion, but in a manner similar to a space-like para-
meterisation, constitutes a subject, which has been already described and used several
years ago in another context [29]. In this manner, one of the basic forms of the present
study has somehow a particular precedent example.

In the same line of thought, but in a very different context, several space–time
coordinates are used to describe turbulent flow [30]. In this way, the present treatment
has not issued from the complete nothingness, but has a reasonable and well-documented
background both at submicroscopic and macroscopic levels.

Thus, the plausible scenario, which the presented general theory contains, seems
to point out towards a direction where space–time object descriptions can be easily gen-
eralised in the form of assigning to them some (hyper-)matrix characteristics, involving
arbitrary dimensions. Experimental observations of some usual, positive definite, scalar
physical magnitudes can be considered in such a situation the result of measurements
made over multidimensional forms, which by the act of measure will yield such scalar
values.

All of these theoretical speculations, which can be placed among several previous
studies made by other authors [30–32], mainly dedicated to generalise the space-like
features of the physical world, may indicate that, or such general point of view is just a
mathematical exercise, extending the physical reality beyond the everyday experience,
or due to the actual limitations, originated by our bio-physical structure, experimental
space–time may possess an unobservable additional structure. Perhaps, at the light of
the underlying thought of the present paper, a final question can now be set.

6.3. A final question

Owing to some limited nature of contemporary experimental possibilities, the
present work may be, thus, resumed and at the same time ended, proposing the fol-
lowing question: if a crucial space–time super-structure like the one described in this
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paper simply exists, will it just remain forever unattainable by experimental means, or
alternatively will it be observable, albeit with extreme difficulty?
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